3.7.88 \(\int \frac {\sqrt {d+e x}}{(a+c x^2)^{3/2}} \, dx\) [688]

3.7.88.1 Optimal result
3.7.88.2 Mathematica [C] (verified)
3.7.88.3 Rubi [B] (verified)
3.7.88.4 Maple [A] (verified)
3.7.88.5 Fricas [C] (verification not implemented)
3.7.88.6 Sympy [F]
3.7.88.7 Maxima [F]
3.7.88.8 Giac [F]
3.7.88.9 Mupad [F(-1)]

3.7.88.1 Optimal result

Integrand size = 21, antiderivative size = 298 \[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \]

output
x*(e*x+d)^(1/2)/a/(c*x^2+a)^(1/2)-EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^( 
1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(e*x+d)^(1/2)*(1+ 
c*x^2/a)^(1/2)/(-a)^(1/2)/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a) 
^(1/2)+d*c^(1/2)))^(1/2)+d*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^ 
(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(1+c*x^2/a)^(1/2)*((e*x+ 
d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/(-a)^(1/2)/c^(1/2)/(e*x+d)^(1/2 
)/(c*x^2+a)^(1/2)
 
3.7.88.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 12.38 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.37 \[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\frac {\sqrt {d+e x} \left (x-\frac {e \left (a+c x^2\right )}{c (d+e x)}-\frac {i \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{e}+\frac {\sqrt {a} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {c} \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{a \sqrt {a+c x^2}} \]

input
Integrate[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]
 
output
(Sqrt[d + e*x]*(x - (e*(a + c*x^2))/(c*(d + e*x)) - (I*Sqrt[-d - (I*Sqrt[a 
]*e)/Sqrt[c]]*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqr 
t[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x]*EllipticE[I*ArcSinh[Sqrt[ 
-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqr 
t[c]*d + I*Sqrt[a]*e)])/e + (Sqrt[a]*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d 
 + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x]*El 
lipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c 
]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/(Sqrt[c]*Sqrt[-d - (I*Sqrt[ 
a]*e)/Sqrt[c]])))/(a*Sqrt[a + c*x^2])
 
3.7.88.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(634\) vs. \(2(298)=596\).

Time = 0.64 (sec) , antiderivative size = 634, normalized size of antiderivative = 2.13, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {494, 27, 599, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 494

\(\displaystyle \frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\int \frac {e x}{2 \sqrt {d+e x} \sqrt {c x^2+a}}dx}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {e \int \frac {x}{\sqrt {d+e x} \sqrt {c x^2+a}}dx}{2 a}\)

\(\Big \downarrow \) 599

\(\displaystyle \frac {\int -\frac {e x}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{a e}+\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {\left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}+\frac {\sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{\sqrt {c}}}{a e}+\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {\frac {\sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{\sqrt {c}}+\frac {\sqrt [4]{a e^2+c d^2} \left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}}{a e}+\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {\frac {\sqrt [4]{a e^2+c d^2} \left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}+\frac {\sqrt {a e^2+c d^2} \left (\frac {\sqrt [4]{a e^2+c d^2} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\frac {\sqrt {d+e x} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )}\right )}{\sqrt {c}}}{a e}+\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}\)

input
Int[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]
 
output
(x*Sqrt[d + e*x])/(a*Sqrt[a + c*x^2]) + ((Sqrt[c*d^2 + a*e^2]*(-((Sqrt[d + 
 e*x]*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2]) 
/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2]))) + ((c* 
d^2 + a*e^2)^(1/4)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])*Sqrt[(a + 
 (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2)/((a + (c*d^2)/ 
e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])^2)]*EllipticE[2*ArcTan[ 
(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)], (1 + (Sqrt[c]*d)/Sqrt[c*d^ 
2 + a*e^2])/2])/(c^(1/4)*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c 
*(d + e*x)^2)/e^2])))/Sqrt[c] + ((c*d^2 + a*e^2)^(1/4)*(d - Sqrt[c*d^2 + a 
*e^2]/Sqrt[c])*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])*Sqrt[(a + (c* 
d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2)/((a + (c*d^2)/e^2) 
*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])^2)]*EllipticF[2*ArcTan[(c^( 
1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)], (1 + (Sqrt[c]*d)/Sqrt[c*d^2 + 
a*e^2])/2])/(2*c^(1/4)*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*( 
d + e*x)^2)/e^2]))/(a*e)
 

3.7.88.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 494
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-x)*(c + d*x)^n*((a + b*x^2)^(p + 1)/(2*a*(p + 1))), x] + Simp[1/(2*a*(p + 
 1))   Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1)*(c*(2*p + 3) + d*(n + 2*p 
+ 3)*x), x], x] /; FreeQ[{a, b, c, d}, x] && LtQ[p, -1] && GtQ[n, 0] && (Lt 
Q[n, 1] || (ILtQ[n + 2*p + 3, 0] && NeQ[n, 2])) && IntQuadraticQ[a, 0, b, c 
, d, n, p, x]
 

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
3.7.88.4 Maple [A] (verified)

Time = 2.21 (sec) , antiderivative size = 384, normalized size of antiderivative = 1.29

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {\left (c e x +c d \right ) x}{a c \sqrt {\left (x^{2}+\frac {a}{c}\right ) \left (c e x +c d \right )}}-\frac {e \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{a \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(384\)
default \(\frac {\left (-\sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) d e +\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}+\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c \,d^{2}-\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}+c \,x^{2} e^{2}+x c d e \right ) \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}{c e \left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right ) a}\) \(649\)

input
int((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 
output
((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)*((c*e*x+c*d)/a/c*x 
/((x^2+1/c*a)*(c*e*x+c*d))^(1/2)-1/a*e*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(d/e- 
(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*(( 
x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+a*d) 
^(1/2)*((-d/e-(-a*c)^(1/2)/c)*EllipticE(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/ 
2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*Ell 
ipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-( 
-a*c)^(1/2)/c))^(1/2))))
 
3.7.88.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 223, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\frac {3 \, \sqrt {c x^{2} + a} \sqrt {e x + d} c e x + {\left (c d x^{2} + a d\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) + 3 \, {\left (c e x^{2} + a e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right )}{3 \, {\left (a c^{2} e x^{2} + a^{2} c e\right )}} \]

input
integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="fricas")
 
output
1/3*(3*sqrt(c*x^2 + a)*sqrt(e*x + d)*c*e*x + (c*d*x^2 + a*d)*sqrt(c*e)*wei 
erstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/ 
(c*e^3), 1/3*(3*e*x + d)/e) + 3*(c*e*x^2 + a*e)*sqrt(c*e)*weierstrassZeta( 
4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), weierstr 
assPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^ 
3), 1/3*(3*e*x + d)/e)))/(a*c^2*e*x^2 + a^2*c*e)
 
3.7.88.6 Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d + e x}}{\left (a + c x^{2}\right )^{\frac {3}{2}}}\, dx \]

input
integrate((e*x+d)**(1/2)/(c*x**2+a)**(3/2),x)
 
output
Integral(sqrt(d + e*x)/(a + c*x**2)**(3/2), x)
 
3.7.88.7 Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(e*x + d)/(c*x^2 + a)^(3/2), x)
 
3.7.88.8 Giac [F]

\[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(e*x + d)/(c*x^2 + a)^(3/2), x)
 
3.7.88.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (c\,x^2+a\right )}^{3/2}} \,d x \]

input
int((d + e*x)^(1/2)/(a + c*x^2)^(3/2),x)
 
output
int((d + e*x)^(1/2)/(a + c*x^2)^(3/2), x)